1. Construct the perpendicular bisector of segment $A B$.

2. Construct the bisector of given angle.

from p. 280
3. The coordinates of the vertices of rectangle $L M N K$ are $L(-2,5), M(2,5), N(2,3)$, and $K(-2,3)$. The coordinates of the vertices of rectangle $P Q R S$ are $P(3,0), Q(3,-3), R(1,-3)$, and $S(1,0)$. Are these two rectangles congruent? Explain why or why not. If not, how could you change the vertices of one of the rectangles to make them congruent?

Week 16 Tuesday

1. Draw an obtuse triangle, $\triangle R A T$. Bisect $A T$.

2. Write the inverse, converse, and contrapositive of the following statement.

If it is hot, then Sam will go to the beach.
3. Find \mathbf{x}, given $\angle C \cong \angle A$ and

$$
\begin{aligned}
& A C=x+3 \\
& C T=2 x+5 \\
& A T=3 x+2
\end{aligned}
$$

4. Solve $5 x^{2}-x=14$

The three medians intersect in $\triangle A B C$ at point \mathbf{P}.

1. If $A C=\mathbf{3 0} \mathrm{cm}$, then $C Y=$ \qquad .
2. If $P Z=12 \mathrm{~cm}$, then $C P=$ \qquad .
3. [f $\boldsymbol{B Y}=\mathbf{3 3} \mathbf{~ c m}$, then $P Y=$ \qquad .
4. If the area of $\triangle P X C$ is $\mathbf{1 0} \mathbf{~ s q . ~ c m . , ~}$ then the area of $\triangle A B C$ is \qquad .
5. What is point P called?
6. Draw an acute triangle, $\triangle C A T$. Bisect $\angle \mathbf{C}$.

\qquad
7. Draw line m on your paper and point P above the line. Construct a line perpendicular to line m through point P.

8. Construct the altitude from \mathbf{C} to side AT.

9.

a. $\overline{A T} \|$ \qquad
b. If AT $=\mathbf{3 0}$ in., then $L U=$ \qquad
c. If $U T=12 \mathrm{in}$., then $L V=$ \qquad .
d. If $A L=6$ in., then $L B=$ \qquad .
e. Use the information from parts b through d to find th perimeter of $\triangle B A T$.
f. Use the information from parts b through d to find th perimeter of $\triangle L U V$.

