Geometry

Name

Find the errors in each proof and correct them.

1. Given: $\overline{AB} / |\overrightarrow{CD}; m \angle 1 = m \angle 2$ Prove: $m \angle 3 = m \angle 4$

Statements	Reasons
$1. \overline{AB} / / \overline{CD}; \ m \angle 1 = m \angle 2$	1. Given
$2. m\angle 2 = m\angle 3$	2. If lines parallel, then alt. ext. angles
2. IIIZZ — IIIZS	(alt. ext. angles thm.)
$3. m\angle 1 = m\angle 3$	3. Linear Pair Postulate
4. <i>m</i> ∠1 = <i>m</i> ∠4	4. If lines parallel, then corr. angles = (corr angles post)
5. <i>m</i> ∠1 = <i>m</i> ∠5	5. Substitution Property

2. Given: $\overrightarrow{AB} / \overrightarrow{CD}$; $m \angle 1 = m \angle 6$

Prove: $\overrightarrow{AC}//\overrightarrow{EF}$

Statements	Reasons	
$1. \overrightarrow{AB} / \overrightarrow{CD}; \ m \angle 1 = m \angle 6$	1. Given	
$2. m \angle 1 = m \angle 2$	2. Substitution Property	
$3. \ m\angle 2 = m\angle 6$	3. If lines parallel, then corr. angles = (corr angles post)	
4. <i>AC</i> / / <i>EF</i>	4. If lines //, then s.s. int. angles supp. (ss. int. angles thm.)	

Monday warm-up continued....

3. Given: $\overline{AB} / / \overline{DE}$; $m \angle 1 = m \angle 2$

Prove: $m \angle 3 = m \angle 4$

Statements	Reasons
$1. \overline{AB} / / \overline{DE}; \ m \angle 1 = m \angle 2$	1. Given
2. <i>m</i> ∠2 = <i>m</i> ∠3	2. Linear Pair Postulate
$3. m\angle 1 = m\angle 3$	3. If lines parallel, then alt. int. angles = (alt int angles thm.)
4. <i>m∠</i> 1 = <i>m</i> ∠2	4. Substitution Property
5. <i>m</i> ∠3 = <i>m</i> ∠4	5. Substitution Property

Performance Task 2

4. In the diagram below, $a \parallel b$. For lines p and q to be parallel, what is $m \angle 4$? Explain.

1. Write the equation of the line that passes through the point (3,-2) and is perpendicular to the line

$$y=\frac{2}{5}x-1.$$

ANSWERS in SLOPE-INTERCEPT

FORM.

- 2. Write the equation of the line that passes through the point (2,-3) and is parallel to the line 2x + y = 3.
- 3. Write the equation of the perpendicular bisector of the line that passes through (10,-2) and (6,4).

1. Prove the Exterior Angle Theorem

Given: $\angle 1$ is an exterior angle of $\triangle ABC$.

Prove: $m \angle 1 = m \angle 3 + m \angle 4$

Statements

Reasons

- 1. $\angle 1$ is an exterior angle of $\triangle ABC$.
- 1.
- 2. $m \angle 1 + m \angle 2 = 180^{\circ}$
- 2.

3.

3. Triangle Sum Theorem

4.

4. Substitution Prop.

5.

5.

2. Write the equation of the perpendicular bisector in point-slope form of segment AB if A(2,-3) and B(4,5).