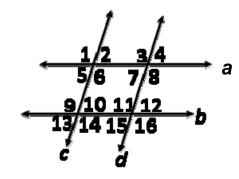

Geometry Week 10 Monday Warm-up


- Graph the lines y=3x+2 and y=3x-4 on the same grid.
 What type of lines are these?
 How are their slopes related?
- 2. Graph the lines $y = -\frac{2}{3}x + 2$ and $y = \frac{3}{2}x 4$ on the same grid.

 What type of lines are these?

 How are their slopes related?

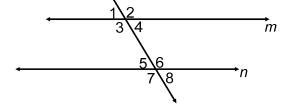
3. Given: $a \parallel b, c \parallel d$ Prove: $\angle 2$ and $\angle 16$

Statements	Reasons
0	0
2. <2 and <3 are supplementary.	
3. $m\angle 2 + m\angle 3 = 180^{\circ}$	0
4. <i>m</i> ∠3 = <i>m</i> ∠11	0
5. <i>m</i> ∠2 + <i>m</i> ∠11 = 180°	0
6. <i>m</i> ∠11 = <i>m</i> ∠16	0
7. $m \angle 2 + m \angle 16 = 180^{\circ}$	
8. < 2 and <16 are supp.	

Geometry Week 10 Tuesday

Given A(-3, 7) and B(4, -13), find the following

- 1. slope of \overline{AB}
- 2. midpoint of \overline{AB}
- 3. AB (exact answer...radical form)
- 4. slope of line parallel to \overline{AB}
- 5. slope of line perpendicular to \overline{AB}
- 6. Find the equation of the line \overrightarrow{AB} in slope-intercept form.


Geometry week 10 Block Day

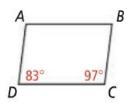
Given m//n. Solve for x. Consider each problem independently.

1.
$$\angle 3 = 8x + 60$$

2.
$$\angle 1 = 7x - 8$$

$$\angle 6 = 4x + 92$$
 $\angle 7 = 3x + 38$

3. Given: a//b; $m\angle 1 = m\angle 2$


Prove: c//d

Statements	Reasons
0	0
0	
0	0
0	0
0	0
0	

page 160 Geometry week 10 Friday Warm-up

Do you UNDERSTAND?

- **4.** Explain how you know when to use the Alternate Interior Angles Theorem and when to use the Converse of the Alternate Interior Angles Theorem.
- 5. Compare and Contrast How are flow proofs and two column proofs alike? How are they different?
- **6. Error Analysis** A classmate says that $\overrightarrow{AB} \parallel \overrightarrow{DC}$ based on the diagram at the right. Explain your classmate's error.

