1-3. Complete the following. Drawing a picture may help.

- 1. In  $\triangle ABC$ , the angle that lies opposite  $\overline{AC}$  is  $\angle$ \_\_\_\_\_.
- 2. If two right triangles have one pair of equal legs, are the triangles necessarily congruent? (Yes or No)
- 3. In  $\triangle XYZ$ , if  $\overline{XY} \cong \overline{XZ}$ , then  $\angle$   $\cong$   $\angle$  .

On problems 4-6, state an abbreviation of a postulate or theorem (SSS, SAS, AAS, ASA, HL) that you could use to prove that  $\triangle ABC \cong \triangle XYZ$ . If none, write "none".

4.  $\angle C \cong \angle Z$ ,  $\overline{AB} \cong \overline{XY}$ ,  $\angle B \cong \angle Y$ 



5.  $\angle C \cong \angle Z$ ,  $\overline{AC} \cong \overline{XZ}$ ,  $\overline{AB} \cong \overline{XY}$ 



6.  $\overline{AB} \cong \overline{XY}, \overline{BC} \cong \overline{XY}, \overline{AC} \cong \overline{XZ}$ 





7. Write a two-column proof.

Given:  $\angle K \cong \angle M$   $\overline{KL} \cong \overline{ML}$ 

**Prove:**  $\Delta JKL \cong \Delta PML$ 



| Statements | Reasons  |  |
|------------|----------|--|
| 1)         | 1) Given |  |
| 2)         | 2)       |  |
| 3)         | 3)       |  |
|            |          |  |

## 8. Write a PARAGRAPH proof.

Given: 
$$\angle KLJ \cong \angle MLJ$$
  
 $\overline{KL} \cong \overline{ML}$ 

**Prove:**  $\Delta JKL \cong \Delta JML$ 



9. Given:  $\overline{AB} \cong \overline{CB}$ , **D** is the midpoint of  $\overline{AC}$ 

**Prove:**  $\triangle ADB \cong \triangle CDB$ 

| Statements                             | Reasons |
|----------------------------------------|---------|
| 1. $\overline{AB} \cong \overline{CB}$ | 1.      |
| D is the midpoint of $\overline{AC}$   |         |
| 2. $\overline{AD} \cong \overline{CD}$ | 2.      |
| 3.                                     | 3.      |
| 4.                                     | 4.      |
|                                        |         |



10. Write the standard form of the equation of the perpendicular bisector of AB given A (3,5) and B (8,3).

## 11. In the figure below, AB > BC.



If we assume that  $m\angle A = m\angle C$ , it follows that AB=BC. This contradicts the given statement that AB>BC. What conclusion can be drawn from this contradiction?

- **A.**  $m\angle A = m\angle B$
- **B.**  $m \angle A \neq m \angle B$
- C.  $m \angle A = m \angle C$
- **D.**  $m \angle A \neq m \angle C$