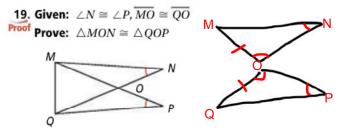
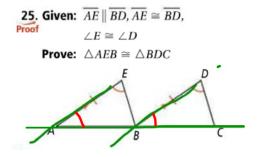

Examples from book p. 238

10. Developing Proof Complete the paragraph proof by filling in the blanks.



Examples from book p. 239


It is given that $\overline{PQ} \perp \overline{QS}$, $\overline{RS} \perp \overline{SQ}$, and T is the midpoint of \overline{PR} . By the definition of perpendicular lines, we know that $\angle Q$ and $\angle R$ are right angles. Since all right angles are congruent, we know that $\angle Q \cong \angle R$. By the vertical angles theorem, $\angle QTP \cong \angle STR$. By the definition of a midpoint, $\overline{QT} \cong \overline{ST}$. Therefore, $\triangle PQT \cong \triangle RST$ by ASA.

Examples from book p. 239

It is given that $\angle N \cong \angle P$, $\overline{MO} \cong \overline{QO}$. $\angle POQ \cong \angle NOM$ by the vertical angles theorem. By AAS, $\triangle MON \cong \triangle QOP$.

Examples from book p. 240

It is given that $\overline{AE} \parallel \overline{BD}$, $\overline{AE} \cong \overline{BD}$, and $\angle E \cong \angle D$. By the corresponding angles postulate, $\angle EAB \cong \angle DBC$. Therefore, $\triangle AEB \cong \triangle BDC$ by ASA.

Examples from book p. 240

26. Given: $\angle 1 \cong \angle 2$, and \overrightarrow{DH} bisects $\angle BDF$. **Prove:** $\triangle BDH \cong \triangle FDH$ D D H HF

It is given that $\angle 1 \cong \angle 2$ and \overline{DH} bisects $\angle BDF$. By definition of the angle bisector, $\angle BDH \cong \angle FDH$. $\overline{DH} \cong \overline{DH}$ by the reflexive property of congruency. By ASA, $\triangle BDH \cong \triangle FDH$.