Slope, lines, parallel lines and perpendicular lines

What is slope?

Tise on Change in K's
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

1. A(-8,2) and B (0,-4) = Find slope of \overline{AB} .

$$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 2}{0 - 8} = \frac{-6}{8} = -\frac{3}{4}$$

- 2. What is the slope of line <u>parallel</u> to \overline{AB} ?
- 3. What is the slope of line <u>perpendicular</u> to \overline{AB} ?

Slope =
$$\frac{a}{b}$$
 $\frac{a}{b}$ parallel slope = $\frac{b}{a}$ perpendicular slope = $-\frac{b}{a}$

4. So, Given A(0,-6), B(4,-4), C(0,2), D(2,3) Is \overrightarrow{AB} parallel to \overrightarrow{CD} ?

$$M_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - -6}{4 - 0} = \frac{2}{4} = \frac{1}{2}$$

$$M_{CB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2}{2 - 0} = \frac{1}{2}$$

5. Write an equation of the line that is parallel to y = -x - 5 and passes through m = -1 so // line has m = -1 also

Slove cert
$$y = mx + b$$

intercept $y = mx + b$
 $6 = -1(-3) + b$
 $-3 = b$
 $y = -x + 3$

Slope (ept
$$y = mx + b$$

 $6 = -1(-3) + b$ Of $y - y_1 = m(x - x_1)$
 $-3 = -3 + b$
 $3 = b$
 $y - 6 = -x - 3$
 $y - 6 = -x - 3$
 $y - 6 = -x + 3$

6. Are these lines perpendicular?

$$y = 5x$$

$$y = -\frac{1}{5}x + 7$$
5 is the opposite reciprocal of $-\frac{1}{5}$.

- If the product of the slopes is equal to -1, then perpendicular.
- If the product of the slopes is not equal to -1 , then NOT perpendicular!
- 7. Write an equation of a line perpendicular to $y = \frac{1}{2}x 1$ and goes through P(2, 3)

$$M_{1}=-2$$

$$Slope-intercept$$

$$y=mx+b$$

$$3=-2(a)+b$$

$$3=-4+b$$

$$+4$$

$$7=b$$

$$Y=-2x+7$$

Pt. - slope

$$y - y_1 = m(x - x_1)$$
 $y - 3 = -2(x - 2)$
 $y - 3 = -2x + 4$
 $+3$
 $y = -2x + 7$