## Geometry Notes Name

Slope, lines, parallel lines and perpendicular lines
What is slope?
$\frac{\text { rise }}{\text { run }}$ or $\frac{\text { changein y's }}{\text { Change in } \text { k's }^{\prime}} \mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

1. $\mathrm{A}(-8,2)$ and $\mathrm{B}(0,-4)=$ Find slope of $\overline{A B}$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-2}{0--8}=\frac{-6}{8}=-\frac{3}{4}$
2. What is the slope of line parallel to $\overline{A B}$ ? $-\frac{3}{4}$
3. What is the slope of line perpendicular to $\overline{A B}$ ?

$$
\begin{aligned}
& \text { Slope }=\frac{a}{b} \\
& \text { parallel slope }=\frac{a}{b} \\
& \text { perpendicular slope }=-\frac{b}{a}
\end{aligned}
$$

4. So, Given $\mathrm{A}(0,-6), \mathrm{B}(4,-4), \mathrm{C}(0,2), \mathrm{D}(2,3)$ Is $\overleftrightarrow{A B}$ parallel to $\overleftrightarrow{C D}$ ?

$$
\begin{array}{ll}
m_{\overleftrightarrow{A B}} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4--6}{4-0}=\frac{2}{4}=\frac{1}{2} \\
m_{\overleftrightarrow{C D}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-2}{2-0}=\frac{1}{2} & y_{s}, \stackrel{A B}{4} / / \overleftrightarrow{C D} .
\end{array}
$$

5. Write an equation of the line that is parallel to $y=-x-5$ and passes through $\mathrm{P}(-3,6)$.

$$
m=-1 \text { so } / / \text { line has } m=-1 \text { also }
$$

$$
\begin{aligned}
\text { slope' st } \quad y & =m x+b \\
\text { inter celt } & =-1(-3)+b \\
6 & =-1 \\
6 & =3+b \\
-3 & =b \\
3 & =-x+3
\end{aligned}
$$

$$
\text { or pt. -slope: } \begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-6=-1(x+1-3) \\
\frac{y-6}{+6}=-x-3 \\
y=-x+3
\end{gathered}
$$

6. Are these lines perpendicular?


If the product of the slopes is equal to -1 , then perpendicular.
If the product of the slopes is not equal to -1 , then NOT perpendicular!
7. Write an equation of a line perpendicular to $y=\frac{1}{2} x-1$ and goes through $P(2,3)$ $m_{\perp}=-2$

Slope-intercept

$$
y=m x+b
$$

$$
3=-2(2)+b
$$

$$
3=-4+b
$$

+4 tu
$7=b$
$y=-2 x+7$

$$
\begin{aligned}
& \text { pt. - slope } \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x-2) \\
& y-3=-2 x+4 \\
& +3+3 \\
& y=-2 x+7
\end{aligned}
$$

