1.

Given:	$AB \cong CB$, D is the midpoint of	AC

Prove: $\triangle ADB \cong$ Statements	Reasons	/
1. $\overline{AB} \cong \overline{CB}$	1.	
D is the midpoir 2.	2.Definition of a Midpoin	nt /
3.	3.Reflexive Property	A
4. $\triangle ADB \cong \triangle CDB$	4.	

4.
$$\triangle ADD = \triangle CDD$$

2. Given: $\overline{AB} /\!/ \overline{DE}$, $\overline{BC} \cong \overline{EC}$

	,
Prove:	$\triangle ABC \cong \triangle DEC$

Prove: $\triangle ABC \cong \triangle DEC$ Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.

3. Write the slope-intercept form of the equation of the line passing through the point (4,-1) and parallel to y=-3/2 x -5.

On problems 4-6, state an abbreviation of a postulate or theorem (SSS, SAS, AAS, ASA, HL) that you could use to prove that $\triangle DEF \cong \triangle RST$. If none, write "none".

4.
$$\overline{DE} \cong \overline{RS}, \overline{EF} \cong \overline{ST}, \overline{DF} \cong \overline{RT}$$

5.
$$\angle D \cong \angle R$$
, $\angle E \cong \angle S$, $\overline{DE} \cong \overline{ST}$

6.
$$\angle F \cong \angle T$$
, $\overline{DF} \cong \overline{RT}$, $\overline{DE} \cong \overline{RS}$

7. Find the value of x.

8. Given ΔDES , $\overline{DE} \cong \overline{ES}$ and $m < D = 48^{\circ}$ Find $m \le E$.

9. Find all of the numbered angles.

Given: a//b; $m \angle 5 = 63^{\circ}$

10. Find *x*. 4x+12

11. Solve $5x^2 + 13x = 6$

For 12-14, it may help to draw your own picture for each.

- 12. In $\triangle QRS$, if \overline{QS} is the hypotenuse, which angle is the right angle?
- 13. In $\triangle QRS$, the side that lies opposite <S is _____.
- 14. In $\triangle QRS$, if $\overline{SR} \cong \overline{QR}$, then < $\underline{\underline{}} \cong \underline{\underline{}}$.
- 15. Change this equation to **STANDARD FORM**. $y = \frac{4}{3}x + \frac{7}{2}$

$$y = \frac{4}{3}x + \frac{7}{2}$$