Using your knowledge of congruent triangles, complete the proofs of these theorems.

1. Given: parallelogram ABCD

with diagonal BD

Prove: $\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{BC}$

<u>A</u>	$\frac{1}{2}$ B
$\sqrt{3}$ 4	
D REASONS	C

STATEMENTS

1.

- 2. $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \parallel \overline{BC}$
- 3. ∠1 ≅ ∠4
- ∠ _ ≅ ∠ _
- 5. ΔABD ≅ Δ_____
- 6.

- 1. Given
- 2. Definition of parallelogram
- 3.
- 4. Reflexive Property
- 5.
- 6.

Conclusion: the opposite sides of a parallelogram are ____

2. Given: parallelogram ABCD with diagonals BD and AC

Prove: $\overline{AE} \cong \overline{EC}$ and $\overline{DE} \cong \overline{EB}$

	STATEMENTS	REASONS
1.		1. Given
2.		2. Definition of parallelogram
3.		3. Opposite sides of a parallelogram are congruent
4.	∠1 ≅ ∠4, ∠ _ ≅ ∠ _	4.
5.	$\Delta ABE \cong \Delta ___$	5.
6.		6.

Conclusion: ______ of a parallelogram bisect each other.