Definition of <u>Isosceles Triangle</u>: A triangle having two equal or congruent sides

1. <u>Isosceles Triangle Theorem</u>

Given: ΔABC is isosceles

where $\overline{AC}\cong \overline{BC}$

 $Prove \colon \ \angle A \cong \angle B$

	STATEMENTS	REASONS
1.	ΔABC is isosceles	1.
2.	$\overline{AC}\cong \overline{BC}$	2.
3.	Draw angle bisector CD	3. Every angle has one and only one bisector
4.	$\angle 1\cong \angle 2$	4.
5.	$\overline{\textbf{CD}}\cong\overline{\textbf{CD}}$	5.
6.	$\Delta ACD \cong \Delta BCD$	6. A
7.	$\angle A\cong \angle B$	7. Corresponding parts of congruent triangles are congruent

2. Converse of Isosceles Triangle Theorem

Given: $\angle A \cong \angle B$

Prove: ΔABC is isosceles

		I	A D B
	STATEMENTS		REASONS
1.	$\triangle ABC$ and $\angle A \cong \angle B$	1.	
2.	Draw angle bisector CD	2.	
3.		3.	Definition of angle bisector
4.	$\overline{\textbf{CD}}\cong\overline{\textbf{CD}}$	4.	
5.	$\Delta ACD \cong \Delta BCD$	5.	
6.	$\overline{AC}\cong \overline{BC}$	6.	
7.	ΔABC is isosceles	7.	
		'	